Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 188(11): 3229-3235, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35986576

RESUMO

Rhizomelic chondrodysplasia punctata (RCDP) are a group of peroxisomal disorders caused by plasmalogen synthesis defects. Patients with RCDP present with rhizomelic short stature, characteristic punctate epiphyseal calcifications, congenital cataracts, severe intellectual disability, seizures, and facial dysmorphism. Pathogenic variants in AGPS result in RCDP type 3 (RCDP3) which is an extremely rare disorder characterized by isolated ADHAPS deficiency. Six patients with RCDP3 have been identified, upto-date. We report two new patients with RCDP3 and their novel variants, c.154dupG (p.Ala52GlyfsTer6) and c.637+1G>A, in the AGPS gene. We also present a review of previously reported RCDP3 patients.


Assuntos
Condrodisplasia Punctata Rizomélica , Condrodisplasia Punctata , Deficiência Intelectual , Condrodisplasia Punctata/genética , Condrodisplasia Punctata Rizomélica/genética , Condrodisplasia Punctata Rizomélica/patologia , Genótipo , Humanos , Plasmalogênios
2.
Front Cell Dev Biol ; 10: 886316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898397

RESUMO

Rhizomelic chondrodysplasia punctata type 1 (RCDP1) is a peroxisome biogenesis disorder caused by defects in PEX7 leading to impairment in plasmalogen (Pls) biosynthesis and phytanic acid (PA) oxidation. Pls deficiency is the main pathogenic factor that determines the severity of RCDP. Severe (classic) RCDP patients have negligible Pls levels, congenital cataracts, skeletal dysplasia, growth and neurodevelopmental deficits, and cerebral hypomyelination and cerebellar atrophy on brain MRI. Individuals with milder or nonclassic RCDP have higher Pls levels, better growth and cognitive outcomes. To better understand the pathophysiology of RCDP disorders, we generated an allelic series of Pex7 mice either homozygous for the hypomorphic allele, compound heterozygous for the hypomorphic and null alleles or homozygous for the null allele. Pex7 transcript and protein were almost undetectable in the hypomorphic model, and negligible in the compound heterozygous and null mice. Pex7 deficient mice showed a graded reduction in Pls and increases in C26:0-LPC and PA in plasma and brain according to genotype. Neuropathological evaluation showed significant loss of cerebellar Purkinje cells over time and a decrease in brain myelin basic protein (MBP) content in Pex7 deficient models, with more severe effects correlating with Pex7 genotype. All Pex7 deficient mice exhibited a hyperactive behavior in the open field environment. Brain neurotransmitters analysis of Pex7 deficient mice showed a significant reduction in levels of dopamine, norepinephrine, serotonin and GABA. Also, a significant correlation was found between brain neurotransmitter levels, the hyperactivity phenotype, Pls level and the severity of Pex7 genotype. In conclusion, our study showed evidence of a genotype-phenotype correlation between the severity of Pex7 deficiency and several clinical and neurobiochemical phenotypes in RCDP1 mouse models. We propose that PA accumulation may underlie the cerebellar atrophy seen in older RCDP1 patients, as even relatively low tissue levels were strongly associated with Purkinje cells loss over time in the murine models. Also, our data demonstrate the interrelation between Pls, brain neurotransmitter deficiencies and the neurobehavioral phenotype, which could be further used as a valuable clinical endpoint for therapeutic interventions. Finally, these models show that incremental increases in Pex7 levels result in dramatic improvements in phenotype.

3.
Autophagy ; 18(3): 540-558, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34074205

RESUMO

Promoting the macroautophagy/autophagy-mediated degradation of specific proteins and organelles can potentially be utilized to induce apoptosis in cancer cells or sensitize tumor cells to therapy. To examine this concept, we enriched for autophagosomes from histone deacetylase inhibitor (HDACi)-sensitive U937 lymphoma cells and isogenic HDACi-resistant cells. Mass spectrometry on autophagosome-enriched fractions revealed that HDACi-resistant cells undergo elevated pexophagy, or autophagy of the peroxisome, an organelle that supports tumor growth. To disturb peroxisome homeostasis, we enhanced pexophagy in HDACi-resistant cells via genetic silencing of peroxisome exportomer complex components (PEX1, PEX6, or PEX26). This consequently sensitized resistant cells to HDACi-mediated apoptosis, which was rescued by inhibiting ATM/ataxia-telangiectasia mutated (ATM serine/threonine kinase), a mediator of pexophagy. We subsequently engineered melanoma cells to stably repress PEX26 using CRISPR interference (CRISPRi). Melanoma cells with repressed PEX26 expression showed evidence of both increased pexophagy and peroxisomal matrix protein import defects versus single guide scrambled (sgSCR) controls. In vivo studies showed that sgPEX26 melanoma xenografts recurred less compared to sgSCR xenografts, following the development of resistance to mitogen-activated protein kinase (MAPK)-targeted therapy. Finally, prognostic analysis of publicly available datasets showed that low expression levels of PEX26, PEX6 and MTOR, were significantly associated with prolonged patient survival in lymphoma, lung cancer and melanoma cohorts. Our work highlighted that drugs designed to disrupt peroxisome homeostasis may serve as unconventional therapies to combat therapy resistance in cancer.Abbreviations: ABCD3/PMP70: ATP binding cassette subfamily D member 3; ACOX1: acyl-CoA oxidase 1; AP: autophagosome; COX: cytochrome c oxidase; CQ: chloroquine; CRISPRi: clustered regularly interspaced short palindromic repeats interference; DLBCL: diffuse large B-cell lymphoma; GO: gene ontology; dCas9: Cas9 endonuclease dead, or dead Cas9; HDACi: histone deacetylase inhibitors; IHC: Immunohistochemistry; LAMP2: lysosomal associated membrane protein 2; LCFAs: long-chain fatty acids; LFQ-MS: label-free quantitation mass spectrometry; LPC: lysophoshatidylcholine; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PBD: peroxisome biogenesis disorders; PTS1: peroxisomal targeting signal 1; ROS: reactive oxygen species; sgRNA: single guide RNA; VLCFAs: very-long chain fatty acids; Vor: vorinostat; WO: wash-off.


Assuntos
Autofagia , Melanoma , ATPases Associadas a Diversas Atividades Celulares/genética , Autofagia/genética , Resistência a Medicamentos , Ácidos Graxos/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Mol Ther Methods Clin Dev ; 23: 225-240, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34703844

RESUMO

Patients with Zellweger spectrum disorder (ZSD) commonly present with vision loss due to mutations in PEX genes required for peroxisome assembly and function. Here, we evaluate PEX1 retinal gene augmentation therapy in a mouse model of mild ZSD bearing the murine equivalent (PEX1-p[Gly844Asp]) of the most common human mutation. Experimental adeno-associated virus 8.cytomegalovirus.human PEX1.hemagglutinin (AAV8.CMV.HsPEX1.HA) and control AAV8.CMV.EGFP vectors were administered by subretinal injection in contralateral eyes of early (5-week-old)- or later (9-week-old)-stage retinopathy cohorts. HsPEX1.HA protein was expressed in the retina with no gross histologic side effects. Peroxisomal metabolic functions, assessed by retinal C26:0 lysophosphatidylcholine (lyso-PC) levels, were partially normalized after therapeutic vector treatment. Full-field flash electroretinogram (ffERG) analyses at 8 weeks post-injection showed a 2-fold improved retinal response in the therapeutic relative to control vector-injected eyes. ffERG improved by 1.6- to 2.5-fold in the therapeutic vector-injected eyes when each cohort reached 25 weeks of age. At 32 weeks of age, the average ffERG response was double in the therapeutic relative to control vector-injected eyes in both cohorts. Optomotor reflex analyses trended toward improvement. These proof-of-concept studies represent the first application of gene augmentation therapy to treat peroxisome biogenesis disorders and support the potential for retinal gene delivery to improve vision in these patients.

5.
J Inherit Metab Dis ; 44(4): 1021-1038, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337545

RESUMO

Rhizomelic chondrodysplasia punctata (RCDP) is a heterogenous group of disorders due to defects in genes encoding peroxisomal proteins required for plasmalogen (PL) biosynthesis, specifically PEX7 and PEX5 receptors, or GNPAT, AGPS and FAR1 enzymes. Most patients have congenital cataract and skeletal dysplasia. In the classic form, there is profound growth restriction and psychomotor delays, with most patients not advancing past infantile developmental milestones. Disease severity correlates to erythrocyte PL levels, which are almost undetectable in severe (classic) RCDP. In milder (nonclassic) forms, residual PL levels are associated with improved growth and development. However, the clinical course of this milder group remains largely unknown as only a few cases were reported. Using as inclusion criteria the ability to communicate and walk, we identified 16 individuals from five countries, ages 5-37 years, and describe their clinical, biochemical and molecular profiles. The average age at diagnosis was 2.6 years and most had cataract, growth deficiency, joint contractures, and developmental delays. Other major symptoms were learning disability (87%), behavioral issues (56%), seizures (43%), and cardiac defects (31%). All patients had decreased C16:0 PL levels that were higher than in classic RCDP, and up to 43% of average controls. Plasma phytanic acid levels were elevated in most patients. There were several common, and four novel, PEX7, and GNPAT hypomorphic alleles in this cohort. These results can be used to support earlier diagnosis and improve management in patients with mild RCDP.


Assuntos
Condrodisplasia Punctata Rizomélica/diagnóstico , Estudos de Associação Genética , Gráficos de Crescimento , Adolescente , Adulto , Criança , Pré-Escolar , Condrodisplasia Punctata Rizomélica/genética , Feminino , Humanos , Masculino , Adulto Jovem
6.
Dis Model Mech ; 13(1)2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31862688

RESUMO

Rhizomelic chondrodysplasia punctata (RCDP) is a rare genetic disorder caused by mutations in peroxisomal genes essential for plasmalogen biosynthesis. Plasmalogens are a class of membrane glycerophospholipids containing a vinyl-ether-linked fatty alcohol at the sn-1 position that affect functions including vesicular transport, membrane protein function and free radical scavenging. A logical rationale for the treatment of RCDP is therefore the therapeutic augmentation of plasmalogens. The objective of this work was to provide a preliminary characterization of a novel vinyl-ether synthetic plasmalogen, PPI-1040, in support of its potential utility as an oral therapeutic option for RCDP. First, wild-type mice were treated with 13C6-labeled PPI-1040, which showed that the sn-1 vinyl-ether and the sn-3 phosphoethanolamine groups remained intact during digestion and absorption. Next, a 4-week treatment of adult plasmalogen-deficient Pex7hypo/null mice with PPI-1040 showed normalization of plasmalogen levels in plasma, and variable increases in plasmalogen levels in erythrocytes and peripheral tissues (liver, small intestine, skeletal muscle and heart). Augmentation was not observed in brain, lung and kidney. Functionally, PPI-1040 treatment normalized the hyperactive behavior observed in the Pex7hypo/null mice as determined by open field test, with a significant inverse correlation between activity and plasma plasmalogen levels. Parallel treatment with an equal amount of ether plasmalogen precursor, PPI-1011, did not effectively augment plasmalogen levels or reduce hyperactivity. Our findings show, for the first time, that a synthetic vinyl-ether plasmalogen is orally bioavailable and can improve plasmalogen levels in an RCDP mouse model. Further exploration of its clinical utility is warranted.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Condrodisplasia Punctata Rizomélica/tratamento farmacológico , Plasmalogênios/farmacologia , Compostos de Vinila/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Condrodisplasia Punctata Rizomélica/fisiopatologia , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Estabilidade de Medicamentos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Receptor 2 de Sinal de Orientação para Peroxissomos/fisiologia , Plasmalogênios/química , Plasmalogênios/farmacocinética , Compostos de Vinila/química , Compostos de Vinila/farmacocinética
7.
Exp Eye Res ; 186: 107713, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254513

RESUMO

Zellweger Spectrum Disorder (ZSD) is an autosomal recessive disease caused by mutations in any one of 13 PEX genes whose protein products are required for peroxisome assembly. Retinopathy leading to blindness is one of the major untreatable handicaps faced by patients with ZSD but is not well characterized, and the requirement for peroxisomes in retinal health is unknown. To address this, we examined the progression of retinopathy from 2 to 32 weeks of age in our murine model for the common human PEX1-p.Gly843Asp allele (PEX1-p.Gly844Asp) using electrophysiology, histology, immunohistochemistry, electron microscopy, biochemistry, and visual function tests. We found that retinopathy in male and female PEX1-G844D mice was marked by an attenuated cone function and abnormal cone morphology early in life, with gradually decreasing rod function. Structural defects at the inner retina occurred later in the form of bipolar cell degradation (between 13 and 32 weeks). Inner segment disorganization and enlarged mitochondria were seen at 32 weeks, while other inner retinal cells appeared preserved. Visual acuity was diminished by 11 weeks of age, while signal transmission from the retina to the brain was relatively intact from 7 to 32 weeks of age. Molecular analyses showed that PEX1-G844D is a subfunctional but stable protein, contrary to human PEX1-G843D. Finally, C26:0 lysophosphatidylcholine was elevated in the PEX1-G844D retina, while phopshoethanolamine plasmalogen lipids were present at normal levels. These characterization studies identify therapeutic endpoints for future preclinical trials, including improving or preserving the electroretinogram response, improving visual acuity, and/or preventing loss of bipolar cells.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/fisiologia , Células Fotorreceptoras/fisiologia , Doenças Retinianas/fisiopatologia , Síndrome de Zellweger/complicações , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Modelos Animais de Doenças , Estudos Longitudinais , Camundongos , Doenças Retinianas/genética , Acuidade Visual/fisiologia
8.
J Cell Biochem ; 120(3): 3243-3258, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30362618

RESUMO

Zellweger spectrum disorder (ZSD) results from biallelic mutations in PEX genes required for peroxisome biogenesis. PEX1-G843D is a common hypomorphic allele in the patient population that is associated with milder disease. In prior work using a PEX1-G843D/null patient fibroblast line expressing a green fluorescent protein (GFP) reporter with a peroxisome-targeting signal (GFP-PTS1), we demonstrated that treatments with the chemical chaperone betaine and flavonoid acacetin diacetate recovered peroxisome functions. To identify more effective compounds for preclinical investigation, we evaluated 54 flavonoids using this cell-based phenotype assay. Diosmetin showed the most promising combination of potency and efficacy (EC50 2.5 µM). All active 5',7'-dihydroxyflavones showed greater average efficacy than their corresponding flavonols, whereas the corresponding flavanones, isoflavones, and chalcones tested were inactive. Additional treatment with the proteostasis regulator bortezomib increased the percentage of import-rescued cells over treatment with flavonoids alone. Cotreatments of diosmetin and betaine showed the most robust additive effects, as confirmed by three independent functional assays in primary PEX1-G843D patient cells, but neither agent was active alone or in combination in patient cells homozygous for the PEX1 c.2097_2098insT null allele. Moreover, diosmetin treatment increased PEX1, PEX6, and PEX5 protein levels in PEX1-G843D patient cells, but none of these proteins increased in PEX1 null cells. We propose that diosmetin acts as a pharmacological chaperone that improves the stability, conformation, and functions of PEX1/PEX6 exportomer complexes required for peroxisome assembly. We suggest that diosmetin, in clinical use for chronic venous disease, and related flavonoids warrant further preclinical investigation for the treatment of PEX1-G843D-associated ZSD.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Alelos , Fibroblastos/metabolismo , Flavonoides/farmacologia , Proteínas de Membrana/genética , Peroxissomos/efeitos dos fármacos , Síndrome de Zellweger/patologia , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Quimioterapia Combinada , Flavonoides/uso terapêutico , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/farmacologia , Chaperonas Moleculares/uso terapêutico , Sinais de Orientação para Peroxissomos , Peroxissomos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Síndrome de Zellweger/tratamento farmacológico
9.
Biochim Biophys Acta Rev Cancer ; 1870(1): 103-121, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30012421

RESUMO

Cancer is irrevocably linked to aberrant metabolic processes. While once considered a vestigial organelle, we now know that peroxisomes play a central role in the metabolism of reactive oxygen species, bile acids, ether phospholipids (e.g. plasmalogens), very-long chain, and branched-chain fatty acids. Immune system evasion is a hallmark of cancer, and peroxisomes have an emerging role in the regulation of cellular immune responses. Investigations of individual peroxisome proteins and metabolites support their pro-tumorigenic functions. However, a significant knowledge gap remains regarding how individual functions of proteins and metabolites of the peroxisome orchestrate its potential role as a pro-tumorigenic organelle. This review highlights new advances in our understanding of biogenesis, enzymatic functions, and autophagic degradation of peroxisomes (pexophagy), and provides evidence linking these activities to tumorigenesis. Finally, we propose avenues that may be exploited to target peroxisome-related processes as a mode of combatting cancer.


Assuntos
Neoplasias/metabolismo , Peroxissomos/metabolismo , Antineoplásicos/farmacologia , Autofagia , Carcinogênese , Humanos , Neoplasias/imunologia , Biogênese de Organelas , Peroxissomos/efeitos dos fármacos , Peroxissomos/enzimologia , Peroxissomos/imunologia , Espécies Reativas de Oxigênio/metabolismo
10.
Cell Death Differ ; 24(11): 1912-1924, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28731463

RESUMO

Peroxisomes are a critical rheostat of reactive oxygen species (ROS), yet their role in drug sensitivity and resistance remains unexplored. Gene expression analysis of clinical lymphoma samples suggests that peroxisomes are involved in mediating drug resistance to the histone deacetylase inhibitor (HDACi) Vorinostat (Vor), which promotes ROS-mediated apoptosis. Vor augments peroxisome numbers in cultured lymphoma cells, concomitant with increased levels of peroxisomal proteins PEX3, PEX11B, and PMP70. Genetic inhibition of peroxisomes, using PEX3 knockdown, reveals that peroxisomes protect lymphoma cells against Vor-mediated cell death. Conversely, Vor-resistant cells were tolerant to elevated ROS levels and possess upregulated levels of (1) catalase, a peroxisomal antioxidant, and (2) plasmalogens, ether glycerophospholipids that represent peroxisome function and serve as antioxidants. Catalase knockdown induces apoptosis in Vor-resistant cells and potentiates ROS-mediated apoptosis in Vor-sensitive cells. These findings highlight the role of peroxisomes in resistance to therapeutic intervention in cancer, and provide a novel modality to circumvent drug resistance.


Assuntos
Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Linfoma/patologia , Peroxissomos/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Ácidos Hidroxâmicos/farmacologia , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vorinostat
11.
Autophagy ; 13(5): 868-884, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28521612

RESUMO

Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Autofagia/fisiologia , Transtornos Peroxissômicos/metabolismo , Peroxissomos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Mutação/genética , Transtornos Peroxissômicos/genética , Transporte Proteico/fisiologia , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
12.
J Cell Biol ; 216(2): 367-377, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28108526

RESUMO

Lipid exchange between the endoplasmic reticulum (ER) and peroxisomes is necessary for the synthesis and catabolism of lipids, the trafficking of cholesterol, and peroxisome biogenesis in mammalian cells. However, how lipids are exchanged between these two organelles is not understood. In this study, we report that the ER-resident VAMP-associated proteins A and B (VAPA and VAPB) interact with the peroxisomal membrane protein acyl-CoA binding domain containing 5 (ACBD5) and that this interaction is required to tether the two organelles together, thereby facilitating the lipid exchange between them. Depletion of either ACBD5 or VAP expression results in increased peroxisome mobility, suggesting that VAP-ACBD5 complex acts as the primary ER-peroxisome tether. We also demonstrate that tethering of peroxisomes to the ER is necessary for peroxisome growth, the synthesis of plasmalogen phospholipids, and the maintenance of cellular cholesterol levels. Collectively, our data highlight the importance of VAP-ACBD5-mediated contact between the ER and peroxisomes for organelle maintenance and lipid homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Homeostase , Humanos , Proteínas de Membrana/genética , Microscopia Confocal , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas de Transporte Vesicular/genética
13.
J Cell Biochem ; 112(5): 1250-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21465523

RESUMO

Peroxisome biogenesis disorders (PBDs) are multisystemic autosomal recessive disorders resulting from mutations in PEX genes required for normal peroxisome assembly and metabolic activities. Here, we evaluated the potential effectiveness of aminoglycoside G418 (geneticin) and PTC124 (ataluren) nonsense suppression therapies for the treatment of PBD patients with disease-causing nonsense mutations. PBD patient skin fibroblasts producing stable PEX2 or PEX12 nonsense transcripts and Chinese hamster ovary (CHO) cells with a Pex2 nonsense allele all showed dramatic improvements in peroxisomal very long chain fatty acid catabolism and plasmalogen biosynthesis in response to G418 treatments. Cell imaging assays provided complementary confirmatory evidence of improved peroxisome assembly in G418-treated patient fibroblasts. In contrast, we observed no appreciable rescue of peroxisome lipid metabolism or assembly for any patient fibroblast or CHO cell culture treated with various doses of PTC124. Additionally, PTC124 did not show measurable nonsense suppression in immunoblot assays that directly evaluated the read-through of PEX7 nonsense alleles found in PBD patients with rhizomelic chondrodysplasia punctata type 1 (RCDP1). Overall, our results support the continued development of safe and effective nonsense suppressor therapies that could benefit a significant subset of individuals with PBDs. Furthermore, we suggest that the described cell culture assay systems could be useful for evaluating and screening for novel nonsense suppressor therapies.


Assuntos
Gentamicinas/uso terapêutico , Proteínas de Membrana/genética , Oxidiazóis/uso terapêutico , Alelos , Animais , Células CHO , Condrodisplasia Punctata Rizomélica/metabolismo , Condrodisplasia Punctata Rizomélica/terapia , Códon sem Sentido/efeitos dos fármacos , Cricetinae , Cricetulus , Feminino , Fibroblastos/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Fator 2 da Biogênese de Peroxissomos , Transtornos Peroxissômicos/tratamento farmacológico , Transtornos Peroxissômicos/genética , Receptor 2 de Sinal de Orientação para Peroxissomos , Plasmalogênios/genética , Plasmalogênios/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
14.
Mech Dev ; 123(3): 210-27, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16500087

RESUMO

In vertebrates, the positioning of the internal organs relative to the midline is asymmetric and evolutionarily conserved. A number of molecules have been shown to play critical roles in left-right patterning. Using representational difference analysis to identify genes that are differentially expressed on the left and right sides of the chick embryo, we cloned chick Claudin-1, an integral component of epithelial tight junctions. Here, we demonstrate that retroviral overexpression of Claudin-1, but not Claudin-3, on the right side of the chick embryo between HH stages 4 and 7 randomizes the direction of heart looping. This effect was not observed when Claudin-1 was overexpressed on the left side of the embryo. A small, but reproducible, induction of Nodal expression in the perinodal region on the right side of the embryo was noted in embryos that were injected with Claudin-1 retroviral particles on their right sides. However, no changes in Lefty,Pitx2 or cSnR expression were observed. In addition, Flectin expression remained higher in the left dorsal mesocardial folds of embryos with leftwardly looped hearts resulting from Claudin-1 overexpression on the right side of the embryo. We demonstrated that Claudin-1's C-terminal cytoplasmic tail is essential for this effect: mutation of a PKC phosphorylation site in the Claudin-1 C-terminal cytoplasmic domain at threonine-206 eliminates Claudin-1's ability to randomize the direction of heart looping. Taken together, our data provide evidence that appropriate expression of the tight junction protein Claudin-1 is required for normal heart looping and suggest that phosphorylation of its cytoplasmic tail is responsible for mediating this function.


Assuntos
Embrião de Galinha/metabolismo , Coração/embriologia , Proteínas de Membrana/metabolismo , Junções Íntimas/metabolismo , Sequência de Aminoácidos , Animais , Claudina-1 , Claudina-3 , Clonagem Molecular , Citoplasma/metabolismo , Desenvolvimento Embrionário , Gástrula/fisiologia , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Retroviridae/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
15.
Arch Biochem Biophys ; 442(1): 133-9, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16150419

RESUMO

Mouse fibroblasts in which the mthfd2 gene encoding mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC) was previously inactivated were infected with retroviral expression constructs of dehydrogenase/cyclohydrolase cDNA. Cellular fractionation confirmed that the expressed proteins were properly targeted to the mitochondria. Expression of the NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase enzyme in mitochondria corrected the glycine auxotrophy of the null mutant cells. A construct in which the cyclohydrolase activity of NMDMC was inactivated by point mutation also rescued the glycine auxotrophy, although poorly. This suggests that the cyclohydrolase activity is also required to ensure optimal production of 10-formyltetrahydrofolate. The expression of the NADP-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase in the mitochondria also reversed the glycine requirement of the null cells demonstrating that the use of the NAD cofactor is not absolutely essential to maintain the flux of one-carbon metabolites. All rescued cells demonstrated a decrease in the ratio of incorporation of exogenous formate to serine in standardized radiolabeling studies. This ratio, which is approximately 2.5 for nmdmc(-/-) cells and 0.3 for the wild type cells under the conditions used, is a qualitative indicator of the ability of the mitochondria of the cells to generate formate.


Assuntos
Fibroblastos/enzimologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Mitocôndrias/enzimologia , NADP/metabolismo , NAD/metabolismo , Aminoidrolases/metabolismo , Animais , Western Blotting , Radioisótopos de Carbono , Linhagem Celular , DNA Complementar/metabolismo , Desenvolvimento Embrionário , Glicina/metabolismo , Cinética , Leucovorina/análogos & derivados , Leucovorina/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Camundongos , Mutação
16.
Gene Expr Patterns ; 5(4): 553-60, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15749086

RESUMO

Claudins are a family of proteins that are localized to tight junctions at the apical surface of epithelial cell layers. Over 24 family members have been identified in vertebrates. Despite being well-studied with respect to their function in tight junction selectivity and permeability, the embryonic expression patterns of most claudin family members have not been thoroughly investigated. Here, we report the cloning and expression pattern of a novel chick claudin family member that is most closely related to human claudin-1. Chick claudin-1 was expressed throughout the ectoderm of stage 4-6 chick embryos. Claudin-1 expression was particularly high in the neural epithelium and open neural tube, but decreased as the neural tube closed. High levels of claudin-1 expression were also observed in the developing otic vesicle, nasal placode, ectodermal component of the pharyngeal arches, and in the apical ectodermal ridge of the limb bud from stage 17 onwards. Claudin-1 expression was also detected in scleral papillae, feather buds and migrating primordial germ cells. Lower levels of claudin-1 expression were observed in the endoderm, the ventral pharynx, and several of its derivatives including the bronchi, developing lung epithelium, esophagus, and gut. Claudin-1 expression was detected in the nephric duct and the mesonephros, which are epithelialized derivatives of the intermediate mesoderm, but not in any other mesodermal derivates, including the heart, somites and developing muscle. With the exception of the migrating primordial germ cells and the primitive streak, all other tissues that expressed significant levels of claudin-1 were epithelialized.


Assuntos
Embrião de Galinha/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Sequência de Aminoácidos , Animais , Claudina-1 , Sequência Conservada , Ectoderma/fisiologia , Humanos , Camundongos , Dados de Sequência Molecular , Morfogênese , Sistema Nervoso/embriologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Junções Íntimas/genética
17.
Biochim Biophys Acta ; 1674(1): 78-84, 2004 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-15342116

RESUMO

Deletion of the gene encoding NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC) in mice was demonstrated previously to result in failure to establish definitive erythropoiesis in the developing liver. We examined the expression pattern of nmdmc to look for evidence that would support a tissue specific role for this activity. However, whole mount in situ hybridization revealed ubiquitous expression of nmdmc in the tissues of E9.5 and E10.5 embryos suggesting a broader role. Analysis of chimeras demonstrated that nmdmc-/- cells can survive in liver and other tissues of chimeras establishing that the null defect can be rescued by metabolites supplied by surrounding normal cells. Both the expression pattern and metabolite rescue support the proposal that mitochondrial NMDMC provides one-carbon units for purine synthesis during embryogenesis. The elevated expression of NMDMC in tumour cells, but not in surrounding normal cells, is predicted to result in significant differences in folate-mediated support for purine synthesis in the two cell types.


Assuntos
Aminoidrolases/metabolismo , Divisão Celular/fisiologia , Embrião de Mamíferos/enzimologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Mitocôndrias/enzimologia , Complexos Multienzimáticos/metabolismo , Aminoidrolases/genética , Animais , Quimera , Embrião de Mamíferos/fisiologia , Feminino , Hibridização In Situ , Fígado/citologia , Fígado/metabolismo , Masculino , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multienzimáticos/genética , Gravidez , Purinas/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...